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A set of all limit (Gibbs) states is constructed for the ferromagnetic n-vector 
Curie-Weiss model by means of a generalized quasiaverage method. 
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1. I N T R O D U C T I O N  

Bogolubov's quasiaverage method ~l~ appeared as a means of removing the 
degeneracy (i.e., of separating the pure phases) in statistical-mechanical 
models exhibiting phase transitions accompanied by spontaneous sym- 
metry breaking. It consists in switching on a source term (external field) in 
the Hamiltonian which reduces its symmetry to that of the corresponding 
pure phase below the transition point; after the thermodynamic limit of the 
correlation functions has been calculated, the source is switched off. This 
approach allowed the construction of the exact solution of the BCS- 
model (2) and other mean-field models; see, e.g., Refs. 3 and 4. It is now an 
important tool in the study of models with spontaneous symmetry 
breaking; see, e.g., Refs. 5-7. 

At present, the description of the infinite-volume equilibrium states of 
models in classical statistical mechanics makes use of the general notion of 
limit Gibbs measure, as first introduced by Minlos. (8) These were defined in 
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the whole generality for systems with bona fide interactions as measures 
with prescribed conditional expectations by Dobrushin/9) and Lanford and 
Ruelle (1~ (DLR equations); see also Refs. 11 and 12. It turns out that for 
such systems the whole set of the limit Gibbs measures coincides with the 
set of all weak limits of finite-volume Gibbs measures subject to various 
boundary conditions. 

On the other hand, for models of the mean-field type, where the 
interaction depends on volume and where is no notion such as interaction 
in the infinite system, one cannot define limit Gibbs measures via DLR 
equations. The set of infinite-volume equilibrium states should be obtained 
as weak limits of finite-volume Gibbs states. (s) 

In this note we construct for the n-vector Curie-Weiss model infinite- 
volume equilibrium states (or limit states) as limits of the finite-volume 
Gibbs states. To this end, we propose in Section 2 a generalization of the 
Bogolubov's quasiaverage method consisting in the following: small exter- 
nal symmetry-breaking fields switched on in a finite volume are allowed to 
be inhomogeneous and to depend on volume; also (as we are interested in 
zero-field states where multiple phases arise) they are allowed to go to zero 
simultaneously with the volume going to infinity. By this generalization one 
should obtain not only the pure phases, but all equilibrium states including 
possibly nontranslation invariant states and mixed states. 

Though the Curie-Weiss model has been extensively studied from very 
different points of view (see, e.g., Refs. 13-15), as far as we know, in the 
literature there exists no attempt of a complete description of all its 
equilibrium states, except a recent paper (16~ on Curie-Weiss-Ising model. It 
turns out that for the n-vector Curie-Weiss model: (i) all limit states we 
obtain by the above procedure possess the whole symmetry of the zero-field 
Hamiltonian under the permutations of spins; (ii) these states are convex 
combinations of pure phases (as constructed by the usual quasiaverage 
method). More precisely, for the n-vector Curie-Weiss model in zero exter- 
nal field the limit states are completely specified by the average 
magnetization, and thus they correspond to the points of the ball in Nn of 
radius equal to the spontaneous magnetization: the pure states are the 
points on the sphere, whereas the mixed states correspond to interior of the 
ball. Section 3 is devoted to limit states in nonzero inhomogeneous external 
fields. It is shown that for almost all (with respect to a product probability 
measure) external field configurations the limit state exists and is deter- 
mined by one "average" self-consistency equation. 
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2. L IMIT  STATES AT ZERO EXTERNAL FIELD 

We start with defining the ferromagnetic Curie-Weiss model in an 
external field for N spins. Let h~ ~v) = (/~u) ..... /~(xN)) e NN, and fl > 0 be given. 
To every j =  1,..., N we assign a spin, i.e., a random vector in N~ of unit 
length: d j e S " - ~ ;  the unit sphere S ~ ~ is endowed with the rotationally 
invariant probability measure dd. The joint probability distribution of 
crN = (dl ..... tiN) corresponding to the external fields h! N) and temperature 
fl-~ is given according to the Gibbs prescription by the following density 
with respect to the free product m e a s u r e  d~  u = F I L l  d(~j: 

pu(C~N; fl, h(N x)) ----- [ZN(fl, h(NN))] -1 exp[--flJt~ h(NN))] (1) 

where Zu(fl ,  h(u N)) is the partition function and the Hamiltonian is 

6, - E d , ' /~  ~v) (2) ~YN(6N'h~NN))=-2-N j I j=, 

From (1) one obtains the distribution of k spins, say, d~,..., dk, by 
integrating over the remaining spins: 

{f N } P~U)(ddl ..... ddk; fl, h ~  )) = ~[ dd#pu(~x; fl, h~ N)) d% (3) 
S~-t)u k 

j = k + l  

Suppose now that the fields h (N) have been chosen such that for every 
fixed k the following limit exists: 

P~(dd~ ..... ddk; fl, h ) =  lim P(N)(ddl,..., dd~; fl, h(N N)) (4) 
N ~ o o  

p ~x3 It is easy to check from Eq. (3) that { k}k=l is a consistent family of 
probability distributions on the configuration space Y-=  (S " -  1)~ (a com- 
pact with the Borel Z algebra relative to the product topology we put on 
J ) .  Then, by Kolmogorov's theorem (see, e.g., Ref. 17), there exists a uni- 
que probability measure P on 3"- whose finite-dimensional distributions 

k S n -  1 (projections) on I~j= 1 are Pk. 
A probability measure P on J -  defined in this way from the 

Hamiltonians (2) will be called (in accordance with Ref. 8). a Gibbs dis- 
tribution ( s t a t e ) o f  the infinite-volume Curie-Weiss n-vector model, or 
simply a limit state. 

Of course, P will depend, in general, on the sequence {h(N)}. 
Whenever l i m N ~  ~N)=/~  exists for all j e N ,  we associate P with the 
external field configuration h = {/~}j~ ~. In particular, we are interested in 
limit states corresponding to zero external field (/~ = 0 for all j )  because for 
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h = 0 the Hamiltonian ~N is invariant under the permutation of the spins 
and under simultaneous rotation of all spins, while the limit states are not 
necessarily such. Before stating the result, we fix some notation and briefly 
rem~nd the calculation of the free energy for the zero-field case, i.e., of 
l imu~ ~ (Nil) 1 In Zu(fl, 0). 

Let us define the function q~ : [0, ~ ) ~ [0, ~ ) by 

q~,(y)= fl- l ln fs._, dd exp fld. f, y = Igl (5) 

This is possible because the right-hand side is obviously rotation invariant. 
It is clear that q~,(y) is increasing and convex, while ~0',(y) is concave and 
increases monotonically from 0 to 1. Moreover, ~0~'(0) = fi/n. Therefore, the 
function f , :  [0, o o ) ~  ~1 defined by 

1 y2 
L ( Y ) = ~  --~n(Y) (6) 

has exactly one minimum point Yo(fl) ~ [0, ov ), which equals zero if/3 <~ n 
and equals to a nonzero solution of the equation 

y = qY,(y) (7) 

if 13 > n. Now, using the identity 

and the definitions (5), (6), we have for ZN 

,~ N 2] 
Zu(/3'O)=f(s. 1)~ d"u exp I~-~ ( ~ 1  aJ ) 

\27rJ re. dfexp[-Nfl f"(y)]  (9) 

Passing to spherical coordinates and integrating over the angular variables, 
one obtains, applying the one-dimensional Laplace method 

lira (Nil) -1 In Zu(fi, O) = --f,(Yo(fl)) (10) 
N ~ o o  

Thus, critical temperature fl~-l=n-I and Yo(fl) is the spontaneous 
magnetization. 
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Let us remark that the Curie-Weiss-Ising case corresponds to 
n = 1, S o = { - 1, + 1 } and ~o~= t(y) = fl-~ In chfiy; see Ref. 16. 

P r o p o s i t i o n  1 Suppose [[h(NN)[[ 2=x~N i~(X)'2 �9 2_,j=g,, v ~ ~ 0 a s N ~ a n d  
denote HN = I/-/NI, /?u=:EN=* ~u)and I )N=HNHN 1. Then we have the 
following: 

(i) 
equal 

where 

If HN-+OO and /N---+fi as N ~ o e ,  all the limits (4) exist and 

k 
Pe(ddl ..... d d k ; / )  = [ I  p (d j ; / ) dd j ,  k = 1, 2,... ( l l )  

j = l  

p( d; ~) = exp{fl[yo(fl) d" 13- (P,(Yo(fi))] } (12) 

(ii) I f / tN--+/q  as N ~  oo, the limits (4) exist and equal 

~k(ddl ,..., d(~k; H) -.=- fsn_ I dp exp{ - f i[Yo(f i )  "q" / + (p~(Hyo(fl)) ] } 

x Pk(ddl,..., dde; / ) ,  k = 1, 2,... (13) 

Proof. We consider first the case fl > tic when Yo(fl)> 0 and prove 
assertion (ii). Using again the identity (8) and definition (6) one gets for 
the k-spin distribution density of the finite-volume system [see Eq. (3)] the 
following expression: 

p(N)(OZl,... , O~k; fl, h!~ N)) 

I~~ dfi exp { - fl[ �89 2 + Sk " .F-- Z~= , d,h~N) -- Z T=k + l qO.(I/--/~}U'j)] } 

5~, d j  exp { - f l [ �89  2 - ZN_I (P.(I f -  h~W)l )] } 

where Sk----Y~/=lk dj. Developing ~o~(]fi-/TI) to second order 
qo~(lf--/~J)=q).(y)--/~' fq~;(y)y ~+R(N,/~) one obtains 

in /~: 

+ - '  SK" + k c p ~ ( Y ) ] }  ~ n , , d f i e x p { - f l [ N f , ( y ) + H N ' y ~ p , ( y ) y  + fi 
x exp{fi[52~=, d,. ~}u, + y~7_ ~ +1R( / ,  ,~}N,)] } 

= ~ ,  d f  exp{ - f l [N fn (y )  + I4s" fcPn(Y) y - l ]  } exp{fi F,N= 1 R(f , /~N))}  
(14) 

Now the assumption /~U ~ / ~  [see (ii)] implies that HN" f~0'~(y)y 1_+ 
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/ t .  y~o'.(y) y-1 uniformly in y as N ~  oo. On the other hand, using the con- 
cavity of ~o'.(y) we obtain 

0~<R(y,/~)=h2q~2(y0)+k -\---~o / A Yo n 

where 370= 3~-0t7 for some 0e  (0, 1). So, /Ih~N~ll--,0 implies that the last 
exponentials in the numerator and denominator of Eq. (14) converge 
uniformly in y to 1 as N ~  oo Defining the average ( )~N): 

>(N) I Rn d~g(fi) e x p [ - N f l f , ( y ) ]  
g ~ = 5~,d~exp[_Nfif ,(y)] 

one obtains, by the usual Laplace method for each fixed direction t~ and 
then by integrating over the angular variables, that 

lim (g>~N)=fS d~g(yo(fl) lS) 
N ~  oo n 1 

Taking into account that ]<g>~N)] <~ sup; I g(fi)l (so that <gN-- g)]N) ~ 0 
whenever gN(fi)~ g(y) uniformly in y e  ~ as N ~  oo) we obtain from 
Eq. (14) 

lim p~N)(dl,..., d~; fl, h(N N)) 
N ~ o o  

= lim (exp{ - f l [ ( / ~ '  j /y) q/n(Y) + Sk" Y+ ktpn(y)] } >IN) 
N ~  oo <exp{ -- fl[(/~' ~/y) qg'~(y) ] } )~N) 

_ ~s.-~ d~ exp{ --fl[#'lS~o.(yo(fl)) + S," IJyo(fl) + kq).(yo(fl))] } 
- ~s. 1 d~ exp{ - f l [ /~"  r } 

(15) 

which is identical with Eq. (13) [if we remember that Yo(fl) is a solution of 
Eq. (7)]. Thus assertion (ii) is proved. 

More care is needed to prove (i) because the angle-dependent part in 
the exponents in Eq. (14) has also the divergent factor HN. Defining again 
an auxiliary probability measure (-)(2 N) on N" by the density (QN is a nor- 
malizing factor), 

QN 1 exp {- - f lN[ fn(y) ' tqN' fq /n(y)]}+ 
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we can discard, as above, the last exponentials in Eq. (14). Thus we need 
to evaluate only the limit 

lim (exp{ - f l [ S k  Y+ k~o,(y)] } )~N3 = p~ 
N ~ o o  

Taking [with Eq. (5)] the integral over angles, we get 

~ dy yn-1 exp{ - f i [  Nf , (y)  - cp,(lHNqO'~(y ) + Sk Yl) + kq),,(y)] } 
(16) 

PK = j y  dy y" l e x p { - f l [ N f , ( y ) - ( p ~ ( H N O ' ( y ) ) ] }  

Clearly, because N 1H N --> 0 as N ~  oo and the function cp,(y) has a linear 
growth at infinity, only some compact interval I c (0, oo) containing the 
minimum of the function fn(y) will contribute to the limit (16). Let us 
expand (p,(ll~N(P'n(y) + Sk Y[) for y ~ I to the second order in Sk Y: 

(Pn(tttuqO'n(Y) + Sk Y[)= (Pn(HN(P'n(Y)) + YI)N " Skqon(HN(P'(Y)) + A (17) 

Then for the remainder A [with some ON(y)~ (0, 1) and uniformly in y e I] 
one gets 

IAI~<I 2 2 ,, ~SkSU p {y ~ O , , ( ] H N ~ O ' ( y ) + S k O N ( y ) y ] ) } ~ O  (18) 
y~l 

because derivative cp'n(y ) is bounded away from zero on the compact / .  As 
q),(y) ~ 1 for y ~ oo, we may again apply a uniform convergence argument 
to obtain from Eqs. (16)-(18): 

Pk(dl ,..., dk ; t 5) = exp{fl[Yo(fl) P" Sk -- k~~ ] } 

which proves (11). 
For fl<fl,,, Yo(fl)=0, and it is neither necessary, nor possible to 

restrict the integration in (14) over angles to a small interval in a 
neighborhood of the direction/5 [as in Eq. (16)] or with a measure con- 
centrated a round /4  [as in Eq. (15)]. One can see that provided eN > 0 are 
chosen such that e N ~ 0  and eN> (HN/N) 1/3, then only a neighborhood of 
the origin of the form ].~[2<g,N(lfi[4<,~N, fl~---~c ) will contribute to the 
N--.oo limit of Eq. (14). On the other hand, in this neighbourhood, 
e x p { - f i [ S k '  Y+ k~0,(y)]} approaches (uniformly in angular variables) 1, 
what coincides with Eqs. (11), (12) [and, of course, with Eq. (13) too] for 
Yo(fi) = O. I 

Corollary 1. The measures {Pk}~~ on 3-- satisfy the 
consistency conditions. Consequently, via Kolmogorov's theorem one can 
reconstruct on at least two families of the limit states: dP~(,) and d~n( ,  ). 
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The picture of the set of zero-field limit states given in the Proposition 
and the Corollary is by no means unexpected: it corresponds to the con- 
ventional wisdom view. Indeed, if/3 >/3~ then case (i) describes the pure 
states (pure phases), which correspond to identical independent dis- 
tribution of the spins according to the noninvariant distribution P(dd; fi). 
In other words, the rotation invariance (but not the permutation 
invariance) is broken in these states. Independence implies for continuous 
functions g, ,  g2 E C(~'-) with supp gl n supp g2 = ~ the cluster property: 

f g, g 2 d P p : f  g ldPpf  gzdP~ (19) 

which conveys here the purity (ergodicity) of the states dP~. On the other 
hand, case (ii) describes the mixed states (mixed phases) dN, q. The measure 
dN/? [see Eq. (13)] is explicitly decomposed into its ergodic components 
dP~, 

a~n = Is. , #,~(a~) aP ~ (20) 

which are extreme points of the convex set of the limit states, and thus are 
indecomposable. It has turned out that the probability measure I~(dfi) on 
S n- 1 defining the mixed state depends only on the "total magnetic field," 
/~, see Eq. (13). If / ~ / ? c ,  (12) becomes, as expected, the uniform dis- 
tribution on S n ~, and the distributions (11) and (13) coincide (uniqueness 
of the limit state above the critical temperature). 

Remark 1. If {h(ff )} is an arbitrary sequence satisfying IIh~N~ll ~ 0 as 
N ~  oo (see Proposition 1), then by compactness arguments we can find 
subsequences {Ni} such that {fiN,} converges and {HNi} either converges 
or diverges to infinity. In both cases we are either in the frame of the case 
(ii), or of the case (i), and therefore the family 
{P(~Ni)(dd~ ..... ddk; fl, h(NN~))}2~ converges for N, ~ oo to projections of a 
probability measure on 3--, i.e., to a limit state. 

Remark 2. We view our result as a strong argument in favor of the 
fact that the Hamiltonian (2) has no inhomogeneous limit states at zero 
external field if, e.g., j e 7/d. In order to obtain inhomogeneous states, one 
has to modify the interactions so as to allow several mean fields as done, 
e.g., in Kac-Helfand models(18); thereby interesting phenomena related to 
nonhomogeneity do appear.(19) 

Remark 3. The following observations conserning the assumption 
Ilh~NN~II--,0 for N ~  oo are in order here. This is a regularity condition on 
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the convergence to zero of the external fields. Technically, it allows a sim- 
ple proof of the Proposition 1. In fact, we claim that the main results: (1) 
specifying the set of pure states as well as the fact (2) that all other limit 
states are superpositions of the latter, are valid under the weaken 
assumption: max~,<j_<u []~j(-U)l ~ 0 for N ~  oo. For example, there is no dif- 
ficulty to verify this for homogeneous fields: /~N)=ff(N); j =  1, 2,..., N; 
I/~(u~ I = cN ~; one obtains the statement corresponding to case (i) for all 
0 < c~ < 1. Though IIh(xU)FI = cN ~-2~ ~ 0 only for a > 1/2; case (ii) is obtained 
for ~>  1. 

As a particular case of certain physical significance, we point out the 
construction of limit states via "boundary conditions." If the configuration 
of the last N -  mN spins is frozen: dj = s j =mN + 1, mN+ 2,..., N, then the 
probability distribution of the first mN spins is given by the Hamiltonian 

- - ~  L s~. ' Z d/ (21) 
',j = 1 1 ] = 1  

Therefore, it is equivalent to a homogeneous external field 
/~(N) N 1 N = Y~j . . . .  ~+1 s'j and to a relative shift N 1(N--raN) in ft. 

Remark 4. To construct limit states by a conventional quasiaverage 
procedure, one should calculate the following limits (k = l, 2, 3,...): 

lim lira P(kN)(d(71 ,..., d(7 k ; /~, 8hN)  = Pk(d~l  ..... d~k; ]~, I~), 
e,~O N~oo 

where h is a homogeneous external field: (h) /=/~ j e  N. Using, as above, 
Eqs. (2)-(10) and the Laplace method for the fixed direction /~ one can 
easily obtain that projections {Pk}~-i coincide with the measures 

p co . { k}e=l, see Eq. (11), for tS=h/h. Therefore, the quasiaverage method 
gives us the same result (pure states) as the generalized quasiaverage 
method in the case (i) (see Proposition 1) or in the case 0 < ~ < 1 for the 
homogeneous external fields (see Remark 3). Let us note that the conven- 
tional quasiaverage method corresponds formally to ~ = 0. 

Remark 5. We would like, however, to stress that the explicit for- 
mula (13) for the mixed states may no longer hold if Ilh(xU~l] 7~ 0 for N ~  m. 
Let us choose 

]~N) = 

N - 1 / 6 p  f o r  1 ~<j<2 x/-N 

- 2 N - U 6 ~  for 2 x / N ~ j <  3 x /N  

0 for 3 ~ < ~ j < ~ N  

(22) 
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T h e n / ~ N  = 0, but the third-order term in the expansion in powers of/~}N) in 
Eq. (14) will remove the degeneracy and lead to a limit state with nonzero 
magnetization along ft. 

3. L IMIT  STATES IN R A N D O M  EXTERNAL FIELDS 

We shall show here that limit states can be defined and explicitly 
described for many nonzero external field configurations. 

Let h =  {/~.}j~ be a sequence of independent R"-valued random 
variables identically distributed according to a probability measure dr(h). 
Then the random field configurations {h} belong to the probability space 
(f2, X, 2) where we set 

s 1-[ [1~', dr(hi)], d2(h)= I] dv(~) (23) 
j~N IENI 

P r o p o s i t i o n  2. Let the measure dv be such that 5~. dv(h) 1/~[ < oo. 
Then for the Curie-Weiss model (2) with/~ = (h)j, j = 1, 2 ..... N, the limits 
(4) exist for almost all (with respect to measure d2) external field con- 
figurations and they are (linear convex) superpositions of 

k 
Pk(dd~,..., ddk; io, h ) =  I~ ddj exp{fl[dj. ( T o - / ~ ) -  ~o,([)7o-hjl)] } 

j = l  
(24) 

where Yo(fl) ~ ~/'(fl, v). Here J~(/~, v) is the set of the minimum points of 
the function 

~n(Y) ly2 ~ dv(~7) ~ . ( ly -  Kl) (25) 

Remark 6. In particular, {f0(fl)} are solutions of the following self- 
consistency equation: 

Y= i~ dv(/~ ) ( f - h )  qo~(ly_/~1 ) (26) 
I~-hl 

which is useful to compare with Eqs. (6) and (7). 

Proof. Note that the shifts act ergodically on ~. Then for every fixed 
f the quantity 

1 N 
@N(Y)=~ }-'. q),(I}--/~l) (27) 

j = l  
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converges d2-almost everywhere (d2-a.e.) to <b(y) and 

q~(f) = I~, dv(h) q~( lY-  KI) (28) 

by the individual (or Birkhoff-Khinchine) ergodic theorem. (2~ Using con- 
vexity of function ~on(y ) [see Eq. (5)] one obtains the same for all f 
uniformly on compacts. Moreover, because the quantity N -1 Y~=l t/~[ 
converges d2-a.e, to ~n dr(h) [/~1 the asymptotics at infinity of the function 
qSU(f) is uniform. So, all integrals in Eq. (4) can be restricted to a given 
compact set in evaluating the asymptotics of the density 

k 

p~U)(dl,..., dk;fl, hu)=fR  co~,~)(dY) [-[ 
n j = l  

x e x p { f l e d j ( f - / ~ . ) -  ~G(lf- /~1 )]} 

exp{ - flN[�89 z - (bN(f)] } 
~o ~.~) (dr) - y ~ -d--~ ex-~ -- ~-~-~--~ 5 ~ ~---~) ] } dfi (29) 

Using on this compact the uniform (d2-a.e.) convergence ~0jv(f)~ ~ ( f ) ,  
one obtains the weak (d2-a.e.) convergence of the measures {~o~'~)(df)} in 
Eq. (29) to the probability measure og~(dy) with support on the set Jg(fl, v) 
So, with probability 1 with respect to d2, we have the following equality: 

lira P~N')(dd~,...,dd~;fl, h N ) = f ~  co~(dYo) Pk(dd I ..... dd~,; fo,  h) 
Ni---~ ~ ( f l ,v)  

=-~k(dd,,..., d6k; fl, h) (30) 

which gives the result by a compactness argument. | 

Corol lary  2. In order to make a connection with the quasiaverage 
method, it should be noted that if we switch off the external fields by, e.g., 
scaling the measure dv(/~): t > 0, dv,(•) = dv(t-~K) and letting t ~ 0, then 
the limit states d~, corresponding to configuration h will converge to a 
limit state d~0 corresponding to zero external field. Indeed, according to 
Eq. (30) the limit state d~0 is a superposition of the pure states dP~: 

d~o = ~'f(#,~o) c~176 dP #(~~ (31) 

It is easy to check that Eq. (31) is nothing but another representation of 
the expression (20) where parameter /4  corresponds to that defined by the 
limit v~ --* Vo for the case of a homogeneous external field configuration h 
see Remark 4. 
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Remark 7. We do not consider here a very interesting question 
about the structure of the set Jg(/~, v) [and the limiting set ~'(/?, Vo)]. This 
question is connected with the description of the critical properties of 
ordered magnetic systems placed in random external fields which are now 
under active study. For an interesting discussion of Eq. (26) (connected 
with a spin-glass behavior) we refer to Ref. 21 and also to a recent paper 
(Ref. 22) about the Ising model in a random magnetic field. We hope to 
return to this problem elsewhere. 
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